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Ĥλ = −1

2

X
i

∇2
i + λV̂ee +

X
i

vλ(ri )

λ = 0, Non-interacting λ = 1, Interacting system

EXC =

Z 1

0

Wλdλ

Wλ = 〈ψλ|V̂ee|ψλ〉 − J

0

0

W0

EXC

−TC

λ

W1

1

W
λ

2 / 17



The Adiabatic Connection
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Functional Development ...

A new mixing of Hartree-Fock and local density-functional theories 

Axe1 D. Becke 
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6 

(Received 12 August 1992; accepted 8 October 1992) 

Previous attempts to combine Hartree-Fock theory with local density-functional theory have 
been unsuccessful in applications to molecular bonding. We derive a new coupling of 
these two theories that maintains their simplicity and computational efficiency, and yet greatly 
improves their predictive power. Very encouraging results of tests on atomization 
energies, ionization potentials, and proton affinities are reported, and the potential for future 
development is discussed. 

I. INTRODUCTION 

There has long been interest in the problem of coupling 
Hartree-Fock theory with local density-functional approx- 
imations for dynamical correlation (see Ref. 1 and refer- 
ences therein). In doing so, one attempts to exploit the 
obvious strengths of each partner. Hartree-Fock theory 
provides an exact treatment of exchange at a cost that 
scales well with molecular size and is a practical compu- 
tational tool even for large chemical systems. Unfortu- 
nately, it suffers well-known and severe deficiencies in de- 
scribing chemical bonding and cannot be used in 
thermochemical applications, excepting isodesmic reac- 
tions, without further corrections for “correlation.” These 
post-Hartree-Fock corrections (i.e., Moller-Plesset per- 
turbation theory, configuration interaction, etc.) do not 
scale well with molecular size and are, at least currently, 
impractical in large systems. 

On the other hand, local density-functional correlation 
approximations can be evaluated extremely easily and 
quickly (i.e., by numerical integration of functionals de- 
pending only on total electronic density) and appear to 
offer a convenient alternative to conventional post- 
Hartree+Fock technology. Straightforward addition of 
electron-gas correlation approximations to Hartree-Fock 
energies has not, however, proven successful in thermo- 
chemical tests,’ and more sophisticated approaches have 
consequently been proposed. Unfortunately, these involve 
multiconfiguration self-consistent field (MCSCF) (Refs. 
2-5) or generalized valence-bond (GVB) (Ref. 6) refer- 
ence states and, hence, the beauty and practicality of the 
original “Hartree-Fock plus density-functionals” idea is 
lost. 

In the present work, we propose a new mixing of 
HartreeFock theory and local density-functional theory 
that performs surprisingly well on the thermochemical 
tests of Pople’s Gaussian-l (Gl ) data base.7-9 This new 
approach is no more costly than its predecessors, but de- 
livers superior accuracy and holds great promise for fur- 
ther development. 

II. THEORETICAL BACKGROUND 

The analysis of the present work will be phrased in the 
language of the Kohn-Sham formulation of density- 
functional theory. lo Other formulations are also possible 

but will not be considered here.” We should note at the 
outset that the term ‘LHartree-Fock” theory is not formally 
appropriate in the Kohn-Sham density-functional context, 
and that the term “exact exchange” is preferable. The dis- 
tinctions are subtle, however, and will be dealt with at 
appropriate points in the subsequent text. 

In Kohn-Sham density-functional theory, we imagine 
a reference system of ultimate simplicity: a system of inde- 
pendent noninteracting electrons in a common, one-body 
potential Vx, yielding the same density as the “real” fully- 
interacting system. To be more specific, we imagine a set of 
independent reference orbitals pi satisfying the following 
independent-particle Schrbdinger equation: 

-!V2+j+ VKS*i=ef*i (1) 

with a local one-body potential V,, defined such that the 
noninteracting density 

p= 5 l$il” (2) 
i 

equals the density of the “real” system. Then, we express 
the total electronic energy of the real, fully-interacting sys- 
tem as 

E total= T, + 
s 

P Vnucd3r 

pWp(r2) 
d3rld3r2 + Exe , (3) 

r12 

where To is the kinetic energy of the noninteracting refer- 
ence system, the second and third terms are the nuclear 
interaction energy and the classical Coulomb self-energy, 
respectively, and the last term E,, is the density-functional 
“exchange-correlation” energy. 

Equation (3), in fact, defines the Kohn-Sham 
exchange-correlation energy. Although innocuous in ap- 
pearance, Exe contains, buried within it, all the details of 
two-body exchange and dynamical correlation and a 
kinetic-energy component as well. Nevertheless, it can be 
shown” that E,, depends uniquely on the total electronic 
density distribution and that the Kohn-Sham local poten- 
tial in Eq. ( 1) is given by 

vKS = vn”c + vel + vXC 2 (4) 

where Vel is the usual electronic Coulomb potential, 
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We develop a self-interaction-free exchange-correlation functional which is very accurate for
thermochemistry and kinetics. This is achieved by theoretical construction of the functional form
and nonlinear fitting. We define a simple interpolation of the adiabatic connection that uses exact
exchange, generalized gradient approximation !GGA" and meta-GGA functionals. The performance
is optimized by fitting a small number of empirical parameters. Overall the new functional improves
significantly upon hybrids and meta-GGAs while correctly describing one-electron systems. The
mean absolute error on a large set of reaction barriers is reduced to 1.99 kcal/mol. © 2006
American Institute of Physics. #DOI: 10.1063/1.2179072$

The theoretical formulation and implementation of im-
proved exchange-correlation energy functionals is at the
heart of density-functional theory !DFT" development.1 Im-
pressive progress has been made from the early local density
approximation !LDA"2 to generalized gradient approxima-
tions !GGAs"3–5 and from GGAs to more recent implicit
functionals constructed from the KS orbitals. Hybrid func-
tionals which include a fraction of exact exchange6 and
meta-GGAs which make use of orbital kinetic energy
densities,7 have led to the high accuracy and the wide usage
of DFT. Despite their success, these functionals still exhibit
important failures. For instance, B3LYP,5,6 the most popular
of present functionals, gives errors greater than 4.0 kcal/mol
for reaction energy barriers. Higher accuracy is needed.

Many of the remaining problems of current DFT ap-
proximations are associated with the self-interaction error
!SIE". An electron does not interact with itself. In a one-
electron system, this leads to the requirement that the ex-
change energy exactly cancels the Coulomb energy and the
correlation energy vanishes,

Ex#!$ = − J#!$; Ec#!$ = 0, !1"

where ! denotes any one-electron density. Available
exchange-correlation functionals violate one or both condi-
tions, perhaps with the exception of Becke’s recent work.8

The self-interaction error is undoubtedly the origin of
many qualitative and quantitative failures which plague DFT.
Some of these are dissociation of one-electron systems and
radicals, treatment of fractional number of electrons, charge
transfer processes, underestimation of reaction barriers, and
over estimation of polarizabilities.9,10

There have been two main avenues for SIE correction
which have not been totally successful. One case is exempli-
fied by hybrid functionals, which only partially reduce the
SIE. Another approach is based on the straightforward re-
moval of the SIE by using Perdew-Zunger correction.11

However, such SIE corrected functionals are inferior to their

parent functionals in terms of performance.12 For these rea-
sons the correction of the SIE, while maintaining high accu-
racy, remains a very important challenge in DFT.

In this Communication, we address the SIE problem
within Kohn-Sham !KS" DFT.13 The adiabatic connection
!AC" is modeled using exact exchange, GGAs and meta-
GGAs, which gives a new exchange-correlation energy func-
tional that is exact for one-electron densities. The functional
is accurate for thermochemistry and kinetics, while having
many attractive formal properties. We will show that overall
the new functional, at similar computational cost, signifi-
cantly improves upon commonly used functionals such as
BLYP or B3LYP.

Our theoretical framework is the adiabatic connection,
which has guided and illuminated the construction of
exchange-correlation functionals for many years.14–18 Con-
sider a family of N-electron systems, Ĥv!""= T̂+ V̂ee!rN ,""
+%i,#

N v#!ri ,"", where the electron-electron interaction and
the external potential are parametrized in terms of ", "
! #0,1$. We focus on the linear adiabatic connection,
V̂ee!rN ,""=%i$j" /rij, that links the KS system of noninter-
acting particles !"=0" with the physical system !"=1". The
exchange-correlation energy is exactly defined by the
coupling-constant integration formula

Exc#!$ = &
0

1

W"#!$d" , !2"

where W"#!$= '%"(Vee(%")−J#!$. Here J#!$ is the Coulomb
energy, J#!$=1/2*!!r"!!r!" / (r−r!(drdr!, and %" is the
unique antisymmetric ground state wave function of Ĥ", as-
suming v-representability. Following Langreth and Perdew14

the electron density is fixed along the path, !!r"=!0!r"
=!"!r""", such that %"!r" yields !!r" and minimizes the
expectation value 'T̂+"V̂ee). Once the integrand of the adia-
batic connection is known, Exc is obtained from Eq. !2".

The challenge of the AC approach is that the exact W" is
unknown. Thus, our main goal is to build accurate approxi-
mations of W". In contrast to the usual density functionala"Both authors contributed equally to this work.
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“exchange-correlation” energy. 

Equation (3), in fact, defines the Kohn-Sham 
exchange-correlation energy. Although innocuous in ap- 
pearance, Exe contains, buried within it, all the details of 
two-body exchange and dynamical correlation and a 
kinetic-energy component as well. Nevertheless, it can be 
shown” that E,, depends uniquely on the total electronic 
density distribution and that the Kohn-Sham local poten- 
tial in Eq. ( 1) is given by 

vKS = vn”c + vel + vXC 2 (4) 

where Vel is the usual electronic Coulomb potential, 
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Wλ = a + bλ EXC = a +
b

2
H&H→ B3LYP

Self-interaction-free exchange-correlation functional for thermochemistry
and kinetics

Paula Mori-Sánchez,a! Aron J. Cohen,a! and Weitao Yang
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We develop a self-interaction-free exchange-correlation functional which is very accurate for
thermochemistry and kinetics. This is achieved by theoretical construction of the functional form
and nonlinear fitting. We define a simple interpolation of the adiabatic connection that uses exact
exchange, generalized gradient approximation !GGA" and meta-GGA functionals. The performance
is optimized by fitting a small number of empirical parameters. Overall the new functional improves
significantly upon hybrids and meta-GGAs while correctly describing one-electron systems. The
mean absolute error on a large set of reaction barriers is reduced to 1.99 kcal/mol. © 2006
American Institute of Physics. #DOI: 10.1063/1.2179072$

The theoretical formulation and implementation of im-
proved exchange-correlation energy functionals is at the
heart of density-functional theory !DFT" development.1 Im-
pressive progress has been made from the early local density
approximation !LDA"2 to generalized gradient approxima-
tions !GGAs"3–5 and from GGAs to more recent implicit
functionals constructed from the KS orbitals. Hybrid func-
tionals which include a fraction of exact exchange6 and
meta-GGAs which make use of orbital kinetic energy
densities,7 have led to the high accuracy and the wide usage
of DFT. Despite their success, these functionals still exhibit
important failures. For instance, B3LYP,5,6 the most popular
of present functionals, gives errors greater than 4.0 kcal/mol
for reaction energy barriers. Higher accuracy is needed.

Many of the remaining problems of current DFT ap-
proximations are associated with the self-interaction error
!SIE". An electron does not interact with itself. In a one-
electron system, this leads to the requirement that the ex-
change energy exactly cancels the Coulomb energy and the
correlation energy vanishes,

Ex#!$ = − J#!$; Ec#!$ = 0, !1"

where ! denotes any one-electron density. Available
exchange-correlation functionals violate one or both condi-
tions, perhaps with the exception of Becke’s recent work.8

The self-interaction error is undoubtedly the origin of
many qualitative and quantitative failures which plague DFT.
Some of these are dissociation of one-electron systems and
radicals, treatment of fractional number of electrons, charge
transfer processes, underestimation of reaction barriers, and
over estimation of polarizabilities.9,10

There have been two main avenues for SIE correction
which have not been totally successful. One case is exempli-
fied by hybrid functionals, which only partially reduce the
SIE. Another approach is based on the straightforward re-
moval of the SIE by using Perdew-Zunger correction.11

However, such SIE corrected functionals are inferior to their

parent functionals in terms of performance.12 For these rea-
sons the correction of the SIE, while maintaining high accu-
racy, remains a very important challenge in DFT.

In this Communication, we address the SIE problem
within Kohn-Sham !KS" DFT.13 The adiabatic connection
!AC" is modeled using exact exchange, GGAs and meta-
GGAs, which gives a new exchange-correlation energy func-
tional that is exact for one-electron densities. The functional
is accurate for thermochemistry and kinetics, while having
many attractive formal properties. We will show that overall
the new functional, at similar computational cost, signifi-
cantly improves upon commonly used functionals such as
BLYP or B3LYP.

Our theoretical framework is the adiabatic connection,
which has guided and illuminated the construction of
exchange-correlation functionals for many years.14–18 Con-
sider a family of N-electron systems, Ĥv!""= T̂+ V̂ee!rN ,""
+%i,#

N v#!ri ,"", where the electron-electron interaction and
the external potential are parametrized in terms of ", "
! #0,1$. We focus on the linear adiabatic connection,
V̂ee!rN ,""=%i$j" /rij, that links the KS system of noninter-
acting particles !"=0" with the physical system !"=1". The
exchange-correlation energy is exactly defined by the
coupling-constant integration formula

Exc#!$ = &
0

1

W"#!$d" , !2"

where W"#!$= '%"(Vee(%")−J#!$. Here J#!$ is the Coulomb
energy, J#!$=1/2*!!r"!!r!" / (r−r!(drdr!, and %" is the
unique antisymmetric ground state wave function of Ĥ", as-
suming v-representability. Following Langreth and Perdew14

the electron density is fixed along the path, !!r"=!0!r"
=!"!r""", such that %"!r" yields !!r" and minimizes the
expectation value 'T̂+"V̂ee). Once the integrand of the adia-
batic connection is known, Exc is obtained from Eq. !2".

The challenge of the AC approach is that the exact W" is
unknown. Thus, our main goal is to build accurate approxi-
mations of W". In contrast to the usual density functionala"Both authors contributed equally to this work.
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Wλ = a +
bλ

1 + cλ
EXC = a +

b

c

“
1− loge(1 + c)

c

”
MCY

(Ernzerhof, CPL 263 499 (1996))
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Wλ = a +
bλ

1 + cλ

Choice of a, b, c ....

a = W0 = EX

b = ∂Wλ
∂λ

˛̨̨
λ=0

c chosen to reproduce BLYP Wλ at some λ

MCY1 (1e SI free)
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PE curve of H2 in RKS – static correlation / fractional spins
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reproduce exact properties of the adiabatic connection?
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Strategy - determine accurate properties using Full CI
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∂W FCI
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˛̨̨
λ=0

= −1

2

X
i,j,α,β

|(αi |βj)− (αj |βi)|2

εα + εβ − εi − εj
(like MP2!)

... evaluated using ’exact’ KS orbitals [Wu & Yang, JCP 118 2498 (2003)]

Then choose a, b, c to reproduce these three quantities exactly.
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EXC = EXC(a, b, c) = a + (b/c)
“

1− loge (1+c)
c

”

E = T FCI
s + V FCI

ne + JFCI + Vnn + EXC

Discrepancy from FCI quantifies ability of AC form to describe H2 dissociation

Denote results AC1
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Other 2 electron systems? He-isoelectronic series!
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Why do most improve, but three get worse from H−to Ne8+?
How do we achieve such high accuracy for large Z?

In the Z →∞ high-density limit, the exact AC is linear

Wλ = EX + 2EC,GL2λ (EXC = EX + EC,GL2)

As Z →∞, most of the AC forms exactly reproduce this.

But, three of the forms do not behave in this manner. They are the forms that
become less accurate from H−to Ne8+.
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Conclusions

J. Chem. Phys. 126 244104 (2007)
J. Chem. Phys. 129 064105 (2008)

Illustration of how accurate Ψ can provide insight into DFT

Simple AC forms can be very accurate for 2e systems, when exact input
data provided

Key role of GL2 energy in H2 (R →∞) and He-series (Z →∞)
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