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Systematic improvement . . . ?

Ab initio DFT, Bartlett et al., JCP 123, 062205 (2005). DFT: low cost . . .

Satisfying exact constraints . . . empirical parameters . . .
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In practical calculations, what is the best balance between exact & approximate?

Exact exchange → 1-e self-interaction free; −1/r behaviour in vXC(r); integer
discontinuity.

But, major implications for the associated correlation functional . . . static (left-
right) correlation not contained in E 0

X. SR+LR compromise?
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Recent progress in XC functionals containing full exact exchange . . .

Becke, JCP 122, 064101 (2005)

Mori-Sanchez et al., JCP 124 091102 (2006)

Perdew et al., arXiv:0808.2523v1

Zhao, Truhlar, JPCA 110 13126 (2006)

But, major challenges remain for the correlation functionals ...
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1. Strong static correlation (near degeneracy), eg stretched H2
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Infinite slope arises due to divergence of
GL2 energy!

Peach et al., JCP 126 244104 (2007)
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2. High density limit, eg He isoelectronic series for large Z

Exact behaviour of adiabatic connection:

lim
Z→∞

Wλ = E 0
X + 2EGL2

C λ

Error in Ne8+ energy from this ’model’
AC approx 105 times smaller than for
B3LYP!
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Peach et al., JCP 129 064105 (2008)
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3. Dispersion energies

At large R, Edisp = −C6

R6
− C8

R8
− . . .

The physics of dispersion is completely absent with conventional GGA/meta-
GGA/hybrid functionals

Fdisp =
6C6

R7
+

8C8

R9
+ . . .

JCP 117 11113 (2002)

Pragmatic solution: Add explicit C6R
−6 correction

Rigorous solution: Non-local EC

Dion et al., PRL 92 246401 (2005)

Vydrov et al., JCP 129 014106 (2008)
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DFT for systems with fractional numbers of electrons (locally)
Ruzsinszky et al., JCP 125 194112 (2006); ibid 126 104102 (2007)

Mori-Sanchez et al., JCP 125 201102 (2006); Perdew et al., PRL 49 1691 (1982)

Kohn-Sham calculation. Application of the variational prin-
ciple leads to a system of self-consistent equations !with spin
indices omitted",

Hi!i = #
j

" ji! j , !11"

where Hi is the effective one-electron Hamiltonian

Hi = −
1
2

!2 + v!r" +$ #!r!"
%r − r!%

dr! + vxc!&#$,#%',r"

−$ #i!r!"
%r − r!%

dr! − vxc!&#i,0',r" . !12"

Off-diagonal Lagrange multipliers " ji have to be introduced
in Eq. !11" to maintain the orthogonality of orbitals. The
matrix of Lagrange multipliers &"ij' is generally not Hermit-
ian but at the minimum of the PZ-SIC energy functional it
becomes Hermitian,

"ij = " ji
* , !13"

and hence unitarily diagonalizable.28 Eigenvalues of the
Lagrange multiplier matrix are sometimes used as equiva-
lents of Kohn-Sham orbital energies.28,30–32 However, in Sec.
IV A we demonstrate that the diagonal elements "ii are the
correct orbital energies in the sense of Eq. !6" and eigenval-
ues of the &"ij' matrix do not have any physical meaning.

The details of the minimization of the energy functional
of Eq. !9" can be found elsewhere.29 Minimizing orbitals are
usually localized in shape and look very much like Boys’
orbitals.33 ESIC of Eq. !10" vanishes for the exact xc func-
tional and for any functional that is one-electron SIE-free by
construction, such as hyper-GGAs of Refs. 34 and 35.

III. COMPUTATIONAL DETAILS

All calculations have been performed self-consistently in
the GAUSSIAN suite of programs.36 Calculations on open shell
systems are spin unrestricted. For computing the dissociation
curves of diatomics, stability checks !“Stable=Opt” keyword
in GAUSSIAN" are needed to ensure that the lowest-energy
state is found, especially at large internuclear separations. In
Kohn-Sham calculations we used the “UltraFine” numerical
integration grid, which is a pruned variant of the !99 590"
grid. For PZ-SIC we used the unpruned !99 590" grid. Initial
orbital guesses for PZ-SIC calculations were obtained using
Boys’ localization procedure.33 No spherical symmetry re-
quirements were imposed on electron densities in atoms.
Experimental reference data are taken from Ref. 37 unless
otherwise noted.

IV. RESULTS

A. Varying the electron number in an atom

Figure 1 shows the ground state energy of the C atom as
a function of the electron number N. The exact straight lines
are obtained using the experimental ionization potential !IP"
and electron affinity !EA" of the C atom. The exact deriva-
tive dE /dN is equal to −IP for 5&N'6 and to −EA for

6&N'7 !see Fig. 2". Early plots of these types, for the H
atom in the local spin density approximation, can be found in
Fig. 5 of Ref. 2.

The PBE curve in Fig. 1 has almost quadratic shape and
the derivative discontinuity at N=6 is almost but not com-
pletely missing. A very small discontinuity that is seen in the
plot of "HO for PBE in Fig. 2 is due to the spin dependence

FIG. 1. Total energy !eV" of the C atom as a function of the electron number
N. The energy is zeroed out at N=6. The aug-cc-pV5Z basis set is used in all
calculations except PZ-SIC, where the 6-311+G!3df" basis set is used. The
“exact” lines are obtained from the experimental IP and EA.

FIG. 2. Highest occupied orbital energy "HO !eV" of the C atom as a func-
tion of the electron number N. The aug-cc-pV5Z basis set is used. Exact "HO
are the exact −IP and −EA. Note that "HO crosses zero at N=6.70 in PBE
and at N=6.78 in PBE0.

154109-3 Fractional electron number J. Chem. Phys. 126, 154109 "2007#

Downloaded 02 May 2007 to 129.234.4.76. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

VXC

z

∆XC
0

JCP 129 044110 (2008)

Dissociation of H+
2

Underestimated reaction barriers

Incorrect dissociation to fraction-
ally charged fragments

Underestimation of CT excitations

MESIE / Delocalization error . . .

”Fractional charges are relevant.”
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Kohn-Sham equations for orbital-dependent EXC

For EXC = EXC[{ϕi}], conventional implementations derive KS equations by dif-
ferentiating wrt the orbitals. Not Kohn-Sham theory!

Instead, need functional derivative wrt density

vXC(r) =
δEXC

δρ(r)
=
X

i

Z
dr′
Z

dr′′
»
δEXC

ϕi (r′)

δϕi (r
′)

δvs(r′′)
+ cc

–
δvs(r′′)

δρ(r)

from which the Optimised Effective Potential (OEP) integral equation is derived.

Expand potential in a basis set. But . . .
(Oberwolfach 2006)
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Approaches include truncated SVD; penalty function or specific balancing schemes.
Removes black box attraction?

Or use model potential such as ELP, LHF, CEDA (care for virtuals!).

Important issue, given key role of orbital dependent functionals in modern DFT
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Current-dependence in EXC?

In presence of magnetic field B = ∇× A, which induces orbital current,

EXC = EXC[ρσ, jpσ]

Vignale et al., PRB 37 10685 (1988); Skudlarski et al. PRB 48 8547 (1993)

Most functionals in common use have no current-dependence!

To what extent does this degrade molecular properties?

Even for A = 0, still relevant in open shell atoms using complex orbitals.
Johnson et al., JCP 126 184104 (2007)
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Non-local EXC

Computationally more expensive, but theoretically appealing ...

Random Phase Approximation (ACFDT)
Langreth and Perdew, Solid State Commun. 17 1425 (1977)

Can be used to model dispersion

Exactly dissociates H2 and gives high Z limit of He-series, due to GL2.

Furche, JCP 129 114105 (2008)

Weighted Density Approximation (WDA)

Choice of pair correlation function?
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Time-dependent DFT (TDDFT)

Calculation of electronic excitations with TDDFT is one of the most important
applications of DFT in chemistry. Use the adiabatic approximation

vXC(r, t) = ṽXC(r)|ρ=ρ(r,t)

and so the kernel exhibits no explicit time dependence.

Charge-transfer states are too low.

Excitation energies vanish as H2 stretches.

Poor photoabsorption spectra of nonmetal-
lic solids.

LUMO

HOMO

Need divergence in the kernel → beyond the adiabatic approximation.

Note: Exact exchange improves CT, Dreuw and Head-Gordon, JCP 119 2943 (2003)

Eg: Using long-range corrected functionals, Peach et al. JCP 128 044118 (2008)

Also, strong laser fields: High harmonic generation and multiple ionisations ...
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Calculation of 〈S2〉 in DFT

Chemists keen to use 〈S2〉 to judge quality of a calculation. Usually evaluate
expectation value of the operator with the KS determinant,

〈S2〉 = 〈ΨKS|Ŝ2|ΨKS〉 = S(S + 1) + Nβ −
X

i j

S2
i j

But, this is not the 〈S2〉 of the real system.

Problem:

〈S2〉 = 〈S2〉 [Γ2]

How we do evaluate in terms of the one-particle density, ρ(r)?

Wang et al., JCP 102 3477 (1995) proposed an ’LDA’ approximation, but still
fundamentally linked to a single-determinant wavefunction.

Open question . . .
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Using two-particle information ...

The Hamiltonian operator involves just one- and two-particle operators.

Natural to use a two-particle function as the central variable, i.e. the 2RDM
Γ2(r1, r2; r′1, r

′
2) or its diagonal element, the pair density, ρ2(r1, r2).

Electron-electron repulsion energy expression now known exactly!

Vee =
1

2

ZZ
ρ(r1, r2)

|r1 − r2|
dr1dr2

But, when minimizing energy, how do we know that the function is associated
with an N-electron antisymmetric electronic wavefunction?

The N-representability problem . . .
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Orbital-free DFT

Hohenberg-Kohn theorems tell us

E = E [ρ] = Ts [ρ] +

Z
v(r)ρ(r)dr + J[ρ] + EXC[ρ]

where the density is obtained from

µ =
δTs [ρ]

δρ(r)
+ v(r) +

δJ[ρ]

δρ(r)
+
δEXC[ρ]

δρ(r)

This direct approach is computationally attractive (linear scaling, no orthonor-
malization, no Brillouin zone sampling), but is of limited practical use due to
errors in Ts [ρ]

Much work attempting to develop improved Ts [ρ], often by ensuring correct lin-
ear response. Foley and Madden, PRB 53 10589 (1996); Wang et al., PRB 58 13465

(1998)

Ongoing ... ISTCP-VI symposium.
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Some Challenges for DFT . . .

EXC[ρ] and its systematic improvement

EX[ρ]; balance of exact and approximate

EC[ρ]; near-degeneracy; high density; dispersion

Fractional numbers of electrons; self-interaction; integer discontinuity

Kohn-Sham equations for orbital-dependent functionals (OEP)

Current dependence

Explicit non-locality; high rungs of Jacob’s ladder

Excited states; beyond the adiabatic approximation; strong fields

〈S2〉
Two-particle information; ρ2(r1, r2), Γ2(r1, r2; r′1, r

′
2); N-representability

Orbital free DFT; Ts [ρ]

More . . .
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