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Systematic improvement ... 7
Ab initio DFT, Bartlett et al., JCP 123, 062205 (2005). DFT: low cost ...

Satisfying exact constraints . ..empirical parameters ...

H)\ - 4’\—4’ A\A/ee + Z V/\(ri)

2/16



Ex|[p]

i(F)ei(r)

&:/&mmwmw

B = [ Felole). Voe)dr + (S

X

Ex = SR(p) + LR(W)

0 rpi(Nei(r)e
E —Z //drdr F

--—+ B3LYP

—— CAM-B3LYP

fffff a =020, 3 =080, pfag’ =04
=016, 3 =049, t/ay’ = 0.4

——= a =016, § =039, pfa;' = 0.4

08

ri2/an

In practical calculations, what is the best balance between exact & approximate?

Exact exchange — 1-e self-interaction free; —1/r behaviour in vxc(r); integer

discontinuity.

But, major implications for the associated correlation functional ... static (left-
right) correlation not contained in E;. SR+LR compromise?
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Recent progress in XC functionals containing full exact exchange ...

Becke, JCP 122, 064101 (2005)
Mori-Sanchez et al., JCP 124 091102 (2006)
Perdew et al., arXiv:0808.2523v1

Zhao, Truhlar, JPCA 110 13126 (2006)

But, major challenges remain for the correlation functionals ...
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1. Strong static correlation (near degeneracy), eg stretched H»
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Infinite slope arises due to divergence of
GL2 energy!
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Peach et al.,, JCP 126 244104 (2007)




2. High density limit, eg He isoelectronic series for large Z

Exact behaviour of adiabatic connection:

Jim Wy = ES + 2E8“2 )\

Error in Ne®" energy from this 'model’
AC approx 10° times smaller than for
B3LYP!
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Peach et al., JCP 129 064105 (2008)
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3. Dispersion energies

G G

At large R, Egisp = -G

The physics of dispersion is completely absent with conventional GGA/meta-
GGA /hybrid functionals
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JCP 117 11113 (2002)

Pragmatic solution: Add explicit Cs6R™® correction
Rigorous solution: Non-local Ec

Dion et al., PRL 92 246401 (2005)
Vydrov et al., JCP 129 014106 (2008)



DFT for systems with fractional numbers of electrons (locally)
Ruzsinszky et al., JCP 125 194112 (2006); ibid 126 104102 (2007)
Mori-Sanchez et al., JCP 125 201102 (2006); Perdew et al., PRL 49 1691 (1982)

J. Chem. Phys. 126, 154109 (2007)

——HF
—— PZ-SIC-PBE

Dissociation of HI

E(N) - E©) (eV)

Underestimated reaction barriers

@ Incorrect dissociation to fraction-
ally charged fragments

Underestimation of CT excitations
MESIE / Delocalization error . ..
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"Fractional charges are relevant.”

JCP 129 044110 (2008)



Kohn-Sham equations for orbital-dependent Exc
For Exc = Exc[{pi}], conventional implementations derive KS equations by dif-
ferentiating wrt the orbitals. Not Kohn-Sham theory!
Instead, need functional derivative wrt density
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from which the Optimised Effective Potential (OEP) integral equation is derived.
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Approaches include truncated SVD; penalty function or specific balancing schemes.
Removes black box attraction?

Or use model potential such as ELP, LHF, CEDA (care for virtuals!).

Important issue, given key role of orbital dependent functionals in modern DFT
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Current-dependence in Exc?

In presence of magnetic field B = V x A, which induces orbital current,
EXC = EXC[po'yjpo']

Vignale et al., PRB 37 10685 (1988); Skudlarski et al. PRB 48 8547 (1993)

Most functionals in common use have no current-dependence!

To what extent does this degrade molecular properties?

Even for A = 0, still relevant in open shell atoms using complex orbitals.

Johnson et al., JCP 126 184104 (2007)
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Non-local Exc

Computationally more expensive, but theoretically appealing ...

Random Phase Approximation (ACFDT)
Langreth and Perdew, Solid State Commun. 17 1425 (1977)

@ Can be used to model dispersion

o Exactly dissociates Hy and gives high Z limit of He-series, due to GL2.
o Furche, JCP 129 114105 (2008)

Weighted Density Approximation (WDA)

Choice of pair correlation function?
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Time-dependent DFT (TDDFT)

Calculation of electronic excitations with TDDFT is one of the most important
applications of DFT in chemistry. Use the adiabatic approximation

vxc(r, t) = xc ()] p=p(r.1)

and so the kernel exhibits no explicit time dependence.

o
.“ @ 9%
o Charge-transfer states are too low. ®°

. . . . LUMO
o Excitation energies vanish as Hy stretches. t
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@ Poor photoabsorption spectra of nonmetal- '
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Need divergence in the kernel — beyond the adiabatic approximation.

Note: Exact exchange improves CT, Dreuw and Head-Gordon, JCP 119 2943 (2003)
Eg: Using long-range corrected functionals, Peach et al. JCP 128 044118 (2008)

Also, strong laser fields: High harmonic generation and multiple ionisations ...



Calculation of (S2) in DFT

Chemists keen to use (S?) to judge quality of a calculation. Usually evaluate
expectation value of the operator with the KS determinant,

(8%) = (Wks|S?|Wks) = S(S+ 1)+ Ns — Y S7

)

But, this is not the (S?) of the real system.

Problem:
(%) = (7)1
How we do evaluate in terms of the one-particle density, p(r)?

Wang et al., JCP 102 3477 (1995) proposed an 'LDA’ approximation, but still
fundamentally linked to a single-determinant wavefunction.

Open question ...
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Using two-particle information ...

The Hamiltonian operator involves just one- and two-particle operators.

Natural to use a two-particle function as the central variable, i.e. the 2RDM
M2(r1,r2; ¥'1,¢'2) or its diagonal element, the pair density, pa(r1,r2).

Electron-electron repulsion energy expression now known exactly!

r
ee = // rl, 2 dridr;
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But, when minimizing energy, how do we know that the function is associated
with an N-electron antisymmetric electronic wavefunction?

The N-representability problem ...
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Orbital-free DFT

Hohenberg-Kohn theorems tell us

E = Elpl = Tulol + [ vp(e)de + Il + el

where the density is obtained from

_ 0Ts[p] 6J[p] | 0Exclp]
op(r) dp(r) ~ dp(r)
This direct approach is computationally attractive (linear scaling, no orthonor-

malization, no Brillouin zone sampling), but is of limited practical use due to
errors in T4[p]

+ v(r) +

Much work attempting to develop improved Ts[p], often by ensuring correct lin-
ear response. Foley and Madden, PRB 53 10589 (1996); Wang et al., PRB 58 13465
(1998)

Ongoing ... ISTCP-VI symposium.
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Some Challenges for DFT ...

Exc[p] and its systematic improvement

Ex[p]; balance of exact and approximate

Ec[p]; near-degeneracy; high density; dispersion

Fractional numbers of electrons; self-interaction; integer discontinuity
Kohn-Sham equations for orbital-dependent functionals (OEP)
Current dependence

Explicit non-locality; high rungs of Jacob's ladder

Excited states; beyond the adiabatic approximation; strong fields
(%)

Two-particle information; pa(r1,r2), F2(r1, r2;r'1,r'2); N-representability
Orbital free DFT; Ts[p]

More ...
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